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N Applications of thermal modulation in luminescence spectroscopy

% G. A. Crosby and K. J. Jordan

D Department of Chemistry and Chemical Physics Program, Washington State University

Pullman, Washington 99164-4630

o Abstract
v . :
b- The utility of thermally modulated emission (TME) spectroscopy as a technique for
elucidating the properties of the excited states of molecules and complexes with near-
\ degenerate excited electronic states is reviewed. A description of the TME method, its
N realm of application, and the type of information obtained are given. Particular emphasis
;Q is placed on the use of infrared heating as a tool for observing spectra in diverse media.
: Introduction

Properties of the low-1lying electronic excited states of metal complexes in condensed
phases are.  most conveniently studied by monitoring the luminescence generated by UV
LN excitation.1 For most substances the parameters generally obtained are the energies of the
€\ emitting states above the ground state and the lifetimes of the excited states. Additional
W information can be obtained about the radiative and radiationless constants of the states if
Jt optical _gquantum yield measurements are carried out, although this determination can be

a

tedious.
¥, If the emitting level in a luminescence experiment is nondegenerate, the interpretation
of the 1luminescence results is usually unambiguous, since only one state is involved.
) Often, however, the 'state' is not a state at all but a group (usually three) of excited
o states in close proximity. If information is desired on the individual components of the
- 'state', then other experimental methods must be employed. For organic molecules the lowest
oA excited_ triplet is a well-known example of a set of states that are closely packed, within a

- few cm™', The elucidation of the properties of the individual components can be effected by

the use of Optically Detected Magnetic Resonance (ODMR) in which optical pumping is

supplemented with microwave irradiation that pumps systems between the closely-lying

components.3 Since the splittings of the low-lying triplets of numerous molecules,

including many metal complexes, 1lie in the region spanned by commercial microwave

§ generators, the ODMR method has been used by numerous laboratories to measure properties of
the individual triplet components.

2 3

For many metal complexes, particularly those of the second and third transition series,
the lowest-lying excited states are only near-degenerate. Often the splittings range from a
few wavenumbers to several hundred cm™:, and ODMR cannot be used to stimulate transitions
among them. The level splittings are in the frequency range of vibrations in solids and

o
B

<. compléx molecules, and tunable IR radiation would be required to effect transitions between
N the levels. Even if available, tunable IR radiation would be absorbed by the numerous
;{ vibrational modes present in the samples, and electronic transitions would be difficult to
2 identify.

“,

e Recently we have been developing the technique of Thermal Modulation Emission (TME)
; spectroscopy to study the excited states of transition metal complexes. These complexes
“ display photoluminescence from several excited states that are thermally accessible from the
"y lowest. one either by resistive heating or by direct IR heating. TME measurements supply
Y complementary. information on the excited state splittings in these molecules, information
& that is particularly difficult to obtain by other techniques because of the intrinsically
o’ diffuse nature of the emission spectra. The band widths are often orders of magnitude wider
,-q than the level splittings.

.

Description of the thermal modulation emission method
.
> When a sample of a metal complex is held at low temperature and excited with UV
O radiation,. broad band visible emission is frequently observed. Often the emission is a
4 composite of bands originating from several excited states of the system and spans the
2 entire near-UV and visible regions of the spectrum. Under steady excitation the emission
o band may display evidence of several transitions underlying it, but the contour is often
] uninformative. If, however, the sample is periodically heated while under constant UV
irradiation, then three possible ideal behaviors of the emitted light are manifest. These

u: are shown in Figure 1. In the figure we see that the intensity of a transition may
- increase, decrease, Or remain constant as the sample is heated. Thus, a periodic signal
::; possessing the frequency of the heat pulse will be superimposed on the steady-state
0
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y emission, It is not necessary that the
N M Wy Wor D emitting levels be in thermal equilib-
)¢, rium; nor 1is 1t necessary that all the
k' levels be thermally accessible. What is
A I l ‘ I l l I | dlgg/dT > 0 necessary, however, is that the heat
& transfer to and from the sample be fast
Al g/ T = 0 enough to pgoduce reproducible tempera-
ture excursions at a frequency detectable

by a lock-in amplifier. This condition

| I l l | I | l dlgq/dT < 0 is most easily achieved by mounting the %
sample on a resistive heater inside a "
low-temperature dewar that wuses an P

exchange gas to conduct heat efficiently
from the sample.

- o v a— g W, e - e vt =

Ay N &, Sy Ay

— time
THE SIGNAL = dIo/dT vs )«un

-

Although the thermal modulation (TM)
Figure 1. Schematic representation of ideal technique had been employed in4 the r
TME signals. wg = frequency of heat pulse, measurement of reflgctanee spectra and i
joule or infrared radiation heatings (3Igp,/3T) absorption spectra, application of TM =)
= derivative of emission intensity with spectroscopy to luminescence measurements
temperature. on molecular crystals was first intro-
duced by Francis and coworkers, who
demonstrated the equivalence of TME and
ODMR on an organic crystal system.6 Later Hipps and Francis applied TME to inorganic
compounds with near-degenerate excited states and _showed the usefulness of TME for ,
distinguishing between proposed excited state models.’ With the introduction of several v
simplifying mathematical approximations these authors also derived expressions for the y
expected magnitude of the TME signal in the limit of small temperature excursions of the ;
sample [for details see ref. 7]. For a lock-in amplifier properly phased and tuned to wgy, £)
the TME output signal is P

[ 0707

4%

= b
n[1+(w°r)2]1/2 T T

In this expression wp is the frequency of the square wave heat pulse in the resistive
heater attached to the sample; Tp» the temperature of the bathj; T, the average temperature
of the sample, and (3I/3T)f is the temperature derivative of the band intensity. =t is ',
the thermal relaxation time of the sample. We see that the TME signal, AI(1), is directly
proportional to (3I/3T)T wunder these somewhat restrictive conditions. Ideal behavior of
the emitted 1light is represented in Figure 1. In the real case the signal is not a step
functions it is periodic, howe¥er, with a phase lag that is a complicated function of the
heat conductivity of the sample.
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In the present work we are concerned with the development and refinement of TME
spectroscopy as a technique for the investigation of the excited states of inorganic
complexes. Particular emphasis is placed on the correspondence of the results obtained from
different methods of heating the sample and the extension of the technique to the study of
the same molecule in various solvent (glass) environments.

Description of experimental measurements

Both steady-state and TME spectra were recorded by illuminating the sample with filtered
UV 1light from a mercury lamp and directing the emitted light through a monochromator
supplied with UV blocking filters before the entrance slit. The signal from the
Photomultiplier detector was amplified and stored. The sample, usually a single crystal or
a mass of crystals, was bonded with mineral oil to a thin-film nichrome heater and mounted
in a variable temperature helium dewar. Cooling was achieved by suspending the sample just
above the 1liquid helium reservoir.

Ay YY)

L N L

b
L e s a4

For the TME measurements periodic temperature excursions within the sample were produced
by driving the thin-film nichrome heater (R ~ 20 ohms) with a square wave Voltage oscillator
of variable frequency, duty cycle, and pulse voltage. The oscillator was generally operated
between 4 and 6 Hz to ensure optimal temperature excursions within the sample. Signai forms
were insensitive to both the frequency and the duty cycle chosen. The AC component induced
on the emission spectrum was detected by a properly phased lock-in amplifier whose output
was amplified and recorded. Determination of the absolute sign of a given TME signal was
accomplished by passing a single large-amplitude heat pulse through the sample and
- monitoring the sense of the phototube response with an electrometer.

LN,

Infrared heating of the samples was achieved by substituting a 10-W tungsten lamp and a
mechanical chopper or a 4-W CO, continuous wave laser for the resistive heater. The broad-
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L} . .
] band output of the tungsten lamp was passed through a Corning 7-56 glass filter and focussed

) on the sample through the same window that transmitted the UV excitation beam. Since quartz
p windows are opaque at 10.6 u, a modified optical arrangement was employed to direct the COy
s laser beam to the sample. In this case the sample was mounted at the bottom of a stainless
' steel tube that was equipped with a NaCl window at the top. The IR beam from the laser was

routed by mirrors through the window down to the sample.

For the determinations employing IR pumping (the laser and the tungsten lamp) the sample
excitation was essentially front surface. Excitation of glasses was achieved by cooling the
block initially to 77 K, depositing a drop of solution into a depression on the block and
quickly transferring the apparatus to the helium dewar. The power of the IR heating was
estimated to be 150 mW by comparison of the recorded TME signals with those obtained by
resistive heating.

LA,

-

Results

L

Emission spectra of 2n{4-Me-PhS)j(phen)* crystals at 6.5 K are reproduced in Figure 2.
In Figure 2a the steady-state luminescence is shown. Presented in 2b and 2c are TME spectra
taken with resistive and IR laser heating, respectively. The data clearly reveal that the
first spectrum is composed of at least two bands, a structured emission spanning the region
Lo of 18,000 to 22,000 cm~! and an overlapping band almost devoid of structure that extends
into the red region. The high energy band decreases in intensity as the temperature rises
and the low energy one displays the opposite behavior. After flash excitation _the former
decays with a long life (0.34 s), whereas the latter dies out in milliseconds.B These
ancillary transient measurements demonstrate that at least two excited states not in thermal
equilibrium at the temperature of the steady-state experiment give rise to the observed
emission. The TME results show conclusively that the high energy state loses intensity and
the lower energy one gains intensity as a result of the heat pulse. Detailed studies on a
similar molecule® lead to the inference that Zn(4-Me-PhS);(phen) has two excited states of
widely disparate natures that are separated by a thermally accessible barrier. Each state
decays independently at the temperature of the experiment until the relative populations are
changed by the heat pulse. Systems are driven from the high energy (long-lived) state to
the lower energy one thermally, thus producing a decrease of the intensity of the former and
an increase of the intensity of the latter. A comparison of the curves in Figure 2a and 2b
also shows that the TME results do not depend upon the method of heating. Indeed, a
tungsten lamp can be substituted (see below) for the resistive heating source.
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Figure 2. Emission spectra of Zn(4-Me- Figure 3. TME spectrua of Zn(PhS) (2, 9-Me,-
PhS)y(phen) crystals at 6.5 K. (a) phen) crystals at 6.5 K. (a) steady state
steady state; (b) thermally modulated by emission; (b) heated with tungsten lamp at
resistive heating at 5 Hz; (c) TME via 4 Hz.

002 laser at 4 Hz.
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| * For names, abbreviations, and preparations of these zinc complexes, sce ref. 8,
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In Figure 3 we have plotted the TME signal from the Zn(PhS);(phen)* complex in the
crystalline state at 6.5 K. In this experiment the heating element for the TME
measurement was a tungsten lamp whose radiation was
directed 1into the dewar through a quartz window.
The TME signal clearly reveals the composite nature
of the steady-state spectrum. At least two
electronic transitions occur under the band
contour, a structured one lying at higher energies
and a diffuse one at lower frequencies. This
molecule also displays a barrier between the two
emitting excited states that prevents thermal
communication at 6.5 K. Thermal redistribution of
the ensemble population is induced by the periodic
heat pulses leading to the recorded TME spectra.

o
o
4

(7]
(=]
1

Relative Intensity

Figure 4 shows both the steady-state and the
TME spectra of the open-shell complex
[Ir(IIX)f2=phos)]Cl04**. The normal spectrum is
clearly composite since the TME curve shows both a
positive and a negative intensity excursion as a
function of the heat pulse, Unlike the two
previous cases, however, the entire spectrum decays
18 16 with a single life at all temperatures showing that
the relative populations of the two emitting_ levels

em™'x 10 are controlled by the Boltzmann law, No

evidence for a barrier between the two emitting

Figure 4. Emission spectra of states 1is present but the TME signal is strong.

[Ir(2=phos);]C104 in 16:4:1 v/v Evidently the heat pulse redistributes the excited

ethanol/methanol/methylene chloride population continuously as the temperature changes.

glass. (a) steady state at 6.5 K, Another interesting feature of this experiment is

insert displays published energy the physical state of the sample. The complex was

level system; (b) thermally modu- dissolved in a glass, rather than maintained in the

lated emission at 8.5 K via COjp crystalline state, thus allowing a TME signal to be
laser heating at 2 Hz, obtained on a molecularly dispersed system.

Discussion

The results presented above show the power of TME spectroscopy as a tool for the study of
inorganic complexes possessing near-degenerate excited states. Moreover, the results
demonstrate that thermal equilibrium among the levels is not a prerequisite for obtaining
TME signals. If a barrier separates the emitting levels, however, the magnitude of the heat
pulse must be high enough to pump systems over it.

Resistive heating can be employed to generate TME signals, but several problems arise.
Wires to the heater must be led into the dewar and attached to the heater, a tedious
procedure. Also, attaching the sample to the heater by mineral oil is not always entirely
satisfactory. Frequently the crystal pops off the heater when a 1large heat pulse is
delivered to it at low temperatures. Finally, the resistive heating technique is limited by
the rate of heat conduction to the sample from the heater, and we have devised no reliable
method of measuring the amount of heat actually absorbed by the crystal during the heating
cycle,

Employing an infrared radiative source to deliver heat to the crystal has several
definite advantages over the use of resistive heating. Because the radiation is absorbed
directly by the crystal, more uniform heating occurs. The limiting factor becomes the rate
of dissipation of heat to the bath rather than the rate of heat conduction to the sample.
This virtually dictates that an exchange gas must be present to cool the sample.
Nonetheless, we have obtained TME signals from samples mounted in a displex cryostat where
no exchange gas was presen . The slower cooling vitiated the TME signal and .a lower
frequency (~1 Hz) was required to produce any result. There was interfering scattered light
from the tungsten lamp, which could have been, however, eliminated by interposing.a silicon
window to pass IR radiation of wavelengths longer than 1.1 microns (this_filter was not
available to us for taking the data presented here). Another advantage of IR heating is the
ease of shaping the excitation pulse and modifying the duty cycle by means .of simple chop-
pers. A third, but extremely important, advantage of TR heating is the ease of working with
samples dispersed in glasses, thus affording an opportunity for studying the effect of sol-
vent matrix on the excited state properties, Finally, one can measure the absolute energy
deposition rate in the samples by optical methods when an IR heating source is employed.

*+ The name, synthesis, and a detailed spectroscopic investigation of [Ir(III)(2=phos)>]Cl04
are given in ref. 10.
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Thermally modulated emission spectroscopy is a valuable tool for studying the properties
of near-degenerate excited states of luminescent materials. Coupled with decay time,
quantum yield, and conventional emission measurements, TME is providing new information on
transition metal complexes of interest to spectroscopists and photochemists.
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